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Off-shell Bethe ansatz for the XXZ vertex model and 
solution of the trigonometric Knizhnik-Zamolodchikov 
equations 

H M Babujiantl 
lnstitut fiIr Theoretische Physik. Freie Universilat Berlin, A m i d l e e  14, D-14195 Berlin, 
Germany 

Received I August 1994 

Abstract. We prove that the wavevector of the off-shell Bethe ansatz equation for the 
inhomogeneous XXZ vertex model in lhe quaiclossical limit gives the solution of the 
lrigonometnc Knizhnik-Zamolodchikov equation. We also observe that this solufion is 
the quasiclassical li@ of lhe solution of lhe quantum Knizhnik-&molodchikov equation 
corresponding to U q ( s h ) .  

1. Introduction 

Conformal field theory describes the critical behaviour of the two-dimensional physical 
systems, many of which are exactly integrable. In this case we have found the structure 
connected to the Yang-Baxter equation, which guarantees exact integrability. Usually the 
exact integrable homogeneous vertex model and its connection with the conformal field 
theory [4] or quantum field theory [5] has been considered. The next step in understanding 
this connection is the investigation of the inhomogeneous vertex models. Here we consider 
the inhomogeneous vertex model, where to each vertex we associate two parameters: the 
global spectral parameter A and the disorder parameter z .  The vertex weight matrix St 
depends on A - z .  Hence the transfer mahix of the vertex model now depends on the 
disorder parameters zi. i = 1 ,  . . . , N. Due to the additivity of the spectral parameter, 
transfer matices with different values of spectral parameters commute which each other 
[ I ] ,  which means that the model is integrable. If we have some rational solution of the 
Yang-Baxter equation 8 ( A ;  q) and the transfer matrix T(hl{zJ) ,  then by construction of the 
algebraic Bethe ansatz 161 we have an equation 

where 

@ @ I .  ... , k"l(2.D = Wl,. .. , ~ , l Z l . .  . ., IN) 
is a Bethe wavevector and 

= Q ( ~ I ,  . . . , ~ ~ -  I , A , A ~ + I ,  . . . , h ~ l Z i , . . . , Z ~ ) .  
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the Inlernationa! Soros Foundation and through lhe VW project 'Cooperalion with scientists from CIS'. 
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Furthermore, F,(Al,. . , I  A m [ z t 7 . .  . , Z N )  and A@, A I , .  . . , h,lzl,. . . I ZN) are some func- 
tions and r~ is a Planck-type parameter. such that %(% 0) = I @ I ;  this means that 9 is 
a unit operator at the 7 = 0 point. In the Bethe ansatz we impose the condition Fe = 0 
and after this we have the exact eigenvalue problem such that the vector @ becomes an 
eigenvector and A an eigenvalue of T(A\lz), respectively. In fact the condition Fa = 0 is 
the mass-shell condition. If we keep all the 'unwanted' terms in (I), then the vector 0 in 
general satisfies the equation (I). We call equation (1) the off-shell Bethe ansatz equation 
(OSBAE). In 17-91 we have constructed the solution of the Knizhnik-Zamolodchikov equa- 
tion, which is the differential equation for the N-point correlation function Y(z1, . , . , Z N )  
in the WZNW theory [IO] 

using the OSBAE (1) in the quasiclassical limit, when r~ + 0. In this limit we have 
the off-shell Bethe ansatz problem for the Gaudin theory of non-local magnets [2,3] 
H k , k =  1, ..., N :  

In (2) and (3) the tp, a = 1, . . .,dim(@), represent the generators of the simple Lie algebra 
B and act non-tnvialy in the representation spaces Vi, i = 1, . . . , N .  The vector-valued 
function Q ( z l ,  . . . , Z N )  is the correlation function of the primary fields in the WZNW theory 
and Y (zl , . , , , Z N )  E V '  @ . . . @ V N .  The solution of (2) as in [ I11 is 

Here &LIZ) = & I ,  . . . , A & l ,  . . ,, Z N )  is the quasiclassical limit of the Bethe wavevector 
@ ( A , ,  . . . , A & ,  . . . , Z N )  in the sense that 

@(AI , ,  ..> &nlZI , ,  , , I ZN) + (20)mv(A13 .. , 9 A m l z l ,  . . . , z N )  (5) 

and in fact it is the Bethe wavevector for Gaudin magnets (3), but off mass shell. The scalar 
function ~ ( A l z )  = x ( A 1 , .  . . , hmlz l , .  . . , zN) is constructed from the quasiclassical limit of 
the A(h = z k , A i , ,  . . , A , I Z i , .  . . , ZN), k = 1 , .  . . , N and Fa@], .. . , A,, lz i . .  . . , Z N ) .  This 
representation of the N-point correlation function in WZNW theory shows a deep connection 
between the inhomogeneous vertex models and the WZNW theory, The understanding of this 
fine structure seems to provide us with new knowledge of exact intepbili ty and conformal 
field theory in two dimensions. The application of this method in the case of trigonometric 
and elliptic solutions of the Yang-Baxter equation is also interesting in connection with 
the quantum Knizhnik-Zamolodchikov equation [12-14]. In this paper we consider the 
trigonometric solution of the Yang-Baxter equation and the corresponding trigonometric 
Knizhnik-Zamolodchikov equation [ 151. More precisely, we replace in equation (2) the 
right-hand side, which corresponds to the rational Gaudin magnet (3), by the analogous 
expression of the trigonometric Gaudin [2,3] magnet (38). Here we construct the off- 
shell Bethe ansatz equation for the XYZ inhomogeneous vertex model (section 2) and i n  
the quasiclassical limit (section 3) we construct the solution of the trigonometric Knizhnik- 
Zamolodchikov equation (section 4). In section 5 we observe that the solution thus obtained 
is the quasiclassical li@t of the solution of the quantum Knizhnik-Zamolodchikov equation 
corresponding to Uq(s12). 
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2. Inhomogeneous XXZ vertex model 

The solution of the inhomogeneous XXZ vertex model is completely analogous to the 
homogeneous case. We briefly describe this use of the results in [16, 171. We use three 
types of %-matrices: !I?!,’, %::, and 3,;’ acting in  V, €4 V,, V ,  d V, and V, t3 V,. These 
%-matrices satisfy the following three types of Yang-Baxter equations: 

(6) 

(7) 

(8) 
In (6). %Lz(A) is a solution with dimV, = 2, which is the well known XXZ spin-half 

%;,(A - p)%;3(A)%;;(p) = n;;(p)%;3(A)m;, 

%::(A - p)IR,;,3(A)%,~3 = %:30*)%,;3(A)n::(x - p) 

%,;?(A)m:3(A + @)%?3(ll) = %3@)n:3(A + p)%,;?(A). 

sin(q) cos@ + q )  
sin(2q) 

w, = 2 

w1 = w2 = 1. 

Here I‘. I 2  are unit operators and a, = (at, a*, 
and second subspaces, respectively. The matrix 

) are tk 
is g 

Pauli matrices 
en as 

In (11) a. = I is the unit operator and the operators Ii are given as follows: 

I3 = 
sin(2qS3) cos(2qS3) Io = 

I+ = I ,  + i t 2  = S + f ( S 3 )  
2cos(q) 2 sin(q) 

I- = II + iI, = J(S3)S- 

cting on the first 

sin(2q(S3 + s + 1)) sin(2q(s - S3)) 
(S3 + s + I)(s - S3) J(S’) = - 

sln(2q) ‘ J  
In fact 13, I+ and I- are the generators of the s1,(2) algebra and together with 10 they form 
the generators of the Sklyanin algebra [18]. In (1  I), %;:(A) acts on the space V, d V, and 
Sa = (SI, S2, S3) are the matrices of the SU(2) algebra in arbitrary dimension, which means 
that dimV, = 2s + 1 and S,S, = s(2s + I ) .  It is possible to find 8 i 2 ( A )  from (7) by a 
recurrence relation. This %-matrix was found i n  explicit form in [191. Now let us introduce 
the disorder parameters z1 , . , , , ZN and as usual consider the monodromy operator [6] 

Here the trace is taken in the auxiliary space V, and is denoted as fro. It is convenient to 
rewrite %!,:,(A) and J ( i l z )  as matrices in the auxilary space V,: 
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In (14) we redefined the !R",,(A), dividing by Wo(h)/2. From equation (6) we then have 

R"(1- P)(Jl(hlz) 8 Jz($lz)) = ( J z ( ~ k )  @ Ji(hl~))W'~(h - /L) (16) 

and also 

[T(hlzL TfpIz)l = 0. (17) 
In (15) we introduced Wi2(h) = P'2W~z(h) .  where P" is the permutation operator. 
Rewriting (16) in components, we get the commutation relations between the elements 
J(llz). We need the following: 

(18) 
[A(hIz), A(p lz) l  = [WIZ), WpIz)l= 0 
[B(Alz), B(pIz)l = IC(XlZ), C(plz)l = 0 

where 

Using these commutation relations we find the off-shell Bethe ansatz equation (OSBAE): 

The next step in the Bethe ansatz would consist of imposing the vanishing of the 'unwanted' 
term in (22) such that Fw = 0. The Bethe ansatz equations Fw = 0 classify the eigenvalues 
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and eigenvectors of the T(hlz). One can say that when the Bethe ansatz equations Fa = 0 
are satisfied. the wavefunction is on mass shell. If the conditions Fa = 0 are not imposed, 
then, in general, we have equation (22). and the Bethe wavefunction is off mass shell. In 
this case, as in the rational situation [8-9], we call equation (22) the off-shell Bethe ansatz 
equation (OSBAE). 

3. OSBAE and Gaudin magnets 

By quasiclassical expansion one commonly performs the expansion of the vertex weight 
R(h, q )  around some point qo, such that 8"(h,  q ~ )  = I '  €3 I' [ZO]. One can parametrize 
q,  such that q~ = 0. It is easy to calculate the quasiclassical expansion of %m,v(h). From 
( l l H 1 2 )  we have 

R~;,(A) = I' €3 I' + r+Z(h) + O(qz) (27) 

[U: €3 s: + U: @ s; + cos(A)u: €3 si] (28) I2 r (A) = - 
sin(h) 

The r"(h) is the classical r-matrix and satisfies the classical Yang-Baxter equation 

[rI2(A - F), r t 3 ( h )  + r z 3 ( p ) 1  + [ r ' ' ( ~ ) ,  rZ3(p)] = 0. (29) 

Let us introduce &(A) = J ( h  = zxlz), Tx = T(h  = Z K / Z )  and Ax = A(h = 
z k ,  A I ,  . . . , hm[z). From (12)-(15) and using (27)-(28) we find the quasiclassical expansion 
of all the objects in the OSBAE: 

After setting h = ZK in (22), then dsing (31)-(37) and combining the terms proportional to 
qm+' we find the quasiclassical limit (the first non-trivial consequence) of the OSBAE (22): 
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Here the operators Hk are the Gaudin [2,3] non-local magnets: 

1 [s; @I s; + si" @Is; +cos(u - Zi)$ @I $1. N 
f f k  = 5 sin(z.t - zi) 

In (37) we introduced the new notations 
N m 

hk = X S k S i  COt(Zh - Zi) + X S h  CO% - Z k )  
i $ k  .=I 

m N 
fa = Ccot(h ,  - hp) - CSi cot(h, - Zi) 

I d  = n s-(h,)lfi). 

Bite i= l  

m 

==I 

In (37) we also introduced 'p = S-(ha)'pk. The equations (37)-(41) reproduce the Gaudin 
[2,3]  results, which he found considering the spectral problem for the set of non-local 
commuting Hamiltonians Hk. If in (37) we impose the condition fa = 0, then we obtain 
'p as eigenvector of the operators Hk with eigenvalues hx. The parameters hl ,  , . . , h, have 
to be found from the quasiclassical Bethe ansatz equations fa = 0. 

4. Trigonometric Knizhnik-Zamolodchikov equation 

Let us introduce the function ~ ( h l z )  = x(h1,  . . . , l,lil, . . . , ZN), as in the rational case 
[7-91, obeying the following differential equations 

where K is some constant. The zero-curvature conditions are fulfilled: 

The solution of the equations (42),(43) is given by 

As in the rational case, we define the vector-function ' ~ ( z I ,  . . . , ZN) through multiple contour 
integrals a s  follows: 

*(:I,. t. 3 I N )  = (46) 

Here the integrations are to be taken over some cycles. Now it  is easy to show that the 
vector-function (46) is a solution of the trigonometric Knizhnik-Zamolodchikov equation 
[15]: 
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Here h'k are the Gaudin trigonometric Hamiltonians (38). Substituting (46) into the 
Knizhnik-Zamolodchikov equation (47). using OSBAE (37) and (42). (43) and finally by 
taking into account the relation 

we find the equation 

It is evident that this equation is satisfied because the contours are closed. 

5. Quantum Knizhnik-Zamolodchikov equation 

The quantum Knizhnik-Zamolodchikov equation was introduced in [I31 as a difference 
equation for the correlation function of the interwining operators and in [12] also as a 
differenceequation for the form factor in integrable massive field theory. In formal language 
it is a difference equation for the vector-valued function f (zl,  . . . , Z N )  E V'l, . . . , V'N, 
where V', is a representation space of the U,(@). In this section we analyse the connection 
between the solution of the quantum Knizhnik-Zamolodchikov equation corresponding 
to U,(sl(2)) with our solution of the trigonometric Knizhnik-Zamolodchikov equation. 
The quantum Knizhnik-Zamolodcikov equation is the system of the following difference 
equations [13,14] 

(50) 

A 

~ ( Z I , .  . , , Z j  + K ,  . . . , ZN) = A,(zI , .  . . , ZN) f (ZI, . . . , ZN) 

where the operators A, acting on V'I, . . . , V" are given by 

Aj(Z1, . . . , Z N )  81J'-'(Zj - Z,-1 + K ) .  . . . , %""(Zj - ZI  + K ) ,  Z'')), 
n t ' i ' N ( z j  - z N ) ,  . ,. , !~VJl+l(z, - zj+]) ,  (51) 

In (50),(51) K is some constant, 3 '* '~ (h )  satisfies the Yang-Baxter equation (S), but the 
spaces I ,  2, 3 in general are different. The matrices Z('J) are defined as follows: 

[Z' 8 Z", FR'"(h)l = 0. (52) 
In [I41 the solution of the quantum Knizhnik-Zamolodchikov (50) was written as the 
following Jackson-type integral: 

~ ( z I ,  . . . ,  Z N )  = g(hlz)@(hi, ..., L I Z )  (53) 
( A , .  ..., A d  

where @(AI, . . . , hmlz) is the Bethe wavevector (23) and the function g(hlz) is given as 
N N m  m m 

g(hlz) = n P';JJ (zi  - zj) n n D', - zi)  n Q(L  - exp CC A, . (54) 
W j  ;=I *=I U#@ ( *=I 1 

When all Ii = I ,  i = I ,  . . . , N ,  such that the case that all the spins are half in our language, 
the functions P','J(x), D'i(x) and Q ( x )  comesponding to U q ( d ( 2 ) )  satisfiy the following 
difference equations [14]: 

h 

exp(ix) - q 2  - 
exp(ix) - 1 

D ( x  + K )  = q ' O W  (55)  
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q exp(ix) - q-' 
q-I exp(ir + K) - q 

exp(iu + K )  - I 
exp(ix) - 1 Qb) Q ( x  + K )  = 

If we put K = qx and q = exp(-iq/2) in (55)457), and after we take the limit q + 0, we 
obtain the differential equations 

In equation (54) it  is necessary to make the choice c = c'q and then to take the limit q --f 0. 
So from (54) and (61) we conclude that in the quasiclassical limit we have 

g(Alz) + x(Alz )  (62) 
where ~ ( h l z )  is given by (45). Taking into account that the Bethe wavevector 
O(A1, . . , , AJz) in the quasiclassical limit is of the form (35). we conclude that in the 
quasiclassical limit the solution of the quantum Knizhnik-Zamolodchikov equation is equal 
to the solution of the trigonometric Knizhnik-Zamolodchikov equation (46) in the sense 
that 

f ( Z l , ,  . . , ZN) + (2q)mwzl,. . . , LN).  (63) 
In general, the quasiclassical limit of the solution (53) of the quantum Knizhnik- 
Zamolodchikov equation is connected with the solution of the trigonometric Knizhnik- 
Zamolodchikov equation as given by Cherednik [ 151 

where rXi(A) is a classical r-matrix. In order to find a solution of equation (64) in our 
language it is necessary to use the OSBAE for the ?;(A) constructed from the solution R,v(h) 
(8). Note that the &(A) obey the equation [ T ( A ) ,  ~'(JL)] = 0 and that they have the same 
Bethe wavevector @ ( A I , .  . . , h, lz~, .  . . , ZN). 

6. Conclusion 

In this paper we have constructed a solution of the trigonometric Kniznik-Zamolodchikov 
equation with use of the OSBAE for the inhomogeneous XXZ vertex model, The solution 
obtained here is the quasiclassical limit of the solution to the quantum Knizhnik- 
Zamolodchikov equation corresponding to U&&). From this observation we conclude 
that all Bethe wavevectors, which satisfy the OSBAE, generate the solutions of the quantum 
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Knizhnik-Zamolodchikov equation. In the quasiclassical limit. when the Bethe wavevectors 
become equal to the Bethe wavevectors for the Gaudin magnets, they generate the solutions 
of the usual (undeformed) Knizhnik-Zamolodchikov equation (rational, trigonometric, and 
elliptic). It is intriguing to understand the physical meaning of this fine structure. Why 
do Bethe wavevectors for the inhomogeneous vertex model lead to the solution of the 
Knizhnik-Zamolodchikov equations (usual and deformed)? (During the preparation of this 
paper we learned that a similar result (when all the spins si = $, i = 1, . . . , N) was obtained 
in [21].) 
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